1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
use crate::{stack::Stack, Node};

#[repr(transparent)]
pub struct BuildTreeState<S: Stack>(S);

impl<S: Stack> BuildTreeState<S> {
    pub fn new(i: &impl Iterator<Item = S::Node>) -> Self {
        Self(S::with_capacity(i))
    }

    // 00 => 0 []
    // 01 => 1 [0]
    // 02 => 1 [1]
    // 03 => 2 [1,0]
    // 04 => 2 [1,1],[2]
    // 05 => 2 [2,0]
    // 06 => 2 [2,1]
    // 07 => 3 [2,1,0]
    // 08 => 3 [2,2],[3]
    // 09 => 3 [3,0]
    // 0A => 3 [3,1]
    // 0B => 3 [3,1,0]
    // 0C => 3 [3,1,1],[3,2]
    // 0D => 3 [3,2,0]
    // 0E => 3 [3,2,1]
    // 0F => 4 [3,2,1,0]
    // 10 => 4 [3,2,1,1],[3,2,2],[3,3],[4]
    // 11 => 4 [4,0]
    // ...
    // 1E => 4 [4,3,2,1]
    // 1F => 5 [4,3,2,1,0]
    // 20 => 5 [4,3,2,1,1],[4,3,2,2],[4,3,3],[4,4],[5]
    // ...
    // 3E => 5 [5,4,3,2,1]
    // 3F => 6 [5,4,3,2,1,0]
    // 40 => 6 [5,4,3,2,1,1],[5,4,3,2,2],[5,4,3,3],[5,4,4],[5,5],[6]
    pub fn fold_op(mut self, mut right: S::Node) -> Self {
        let mut right_level = 0;
        loop {
            match self.0.pop_if(right_level) {
                Some(left) => {
                    right = left.new_parent(right);
                    right_level += 1;
                }
                _ => break,
            }
        }
        self.0.push((right, right_level));
        self
    }

    pub fn collect(self) -> Option<S::Node> {
        self.0
            .reduce(|(mut right, mut right_level), (left, left_level)| {
                while left_level > right_level {
                    right = right.new_parent_from_single();
                    right_level += 1;
                }
                (left.new_parent(right), right_level + 1)
            })
            .map(|(v, _)| v)
    }
}

#[cfg(test)]
mod tests {
    use crate::VecStack;

    use super::*;

    #[derive(Clone, Default, PartialEq, Eq, Debug)]
    struct Sum(usize);

    impl Node for Sum {
        fn new_parent(self, right: Self) -> Self {
            Sum(self.0 + right.0)
        }

        fn new_parent_from_single(self) -> Self {
            self
        }
    }

    pub struct DebugStack<T: Node> {
        vec: VecStack<T>,
        max_len: usize,
    }

    impl<T: Node> Stack for DebugStack<T> {
        type Node = T;
        fn with_capacity(i: &impl Iterator) -> Self {
            Self {
                vec: VecStack::with_capacity(i),
                max_len: 0,
            }
        }
        fn push(&mut self, value: (T, u8)) {
            self.vec.push(value);
            self.max_len = self.max_len.max(self.vec.stack.len());
        }
        fn pop_if(&mut self, level: u8) -> Option<T> {
            self.vec.pop_if(level)
        }
    }

    impl<T: Node> Iterator for DebugStack<T> {
        type Item = (T, u8);
        fn next(&mut self) -> Option<Self::Item> {
            self.vec.next()
        }
    }

    #[test]
    fn sum() {
        let f = |n| -> Option<usize> {
            let i = (0..n).map(|v| Sum(v));
            let state = BuildTreeState::<DebugStack<_>>::new(&i);
            let capacity = state.0.vec.stack.capacity();
            let new_state = i.fold(state, BuildTreeState::fold_op);
            // `max_len` should be equivalent to `capacity`.
            assert_eq!(new_state.0.max_len, capacity);
            // a `set` should be equivalent to `n`.
            assert_eq!(new_state.0.vec.set, n);
            // the size of the final stack state should be a number of `1` bits in `n`.
            assert_eq!(
                new_state.0.vec.stack.len(),
                n.count_ones() as usize,
                "n: {n}"
            );
            new_state.collect().map(|v| v.0)
        };
        assert_eq!(f(0), None);
        let g = |n| assert_eq!(f(n), Some(n * (n - 1) / 2));
        for i in 1..10_000 {
            g(i);
        }
        g(100_000_000);
    }
}